3.779 \(\int (a+b \cos (c+d x))^2 (B \cos (c+d x)+C \cos ^2(c+d x)) \, dx\)

Optimal. Leaf size=170 \[ \frac{\left (4 a^2 b B+a^3 (-C)+8 a b^2 C+4 b^3 B\right ) \sin (c+d x)}{6 b d}+\frac{\left (-2 a^2 C+8 a b B+9 b^2 C\right ) \sin (c+d x) \cos (c+d x)}{24 d}+\frac{1}{8} x \left (4 a^2 C+8 a b B+3 b^2 C\right )+\frac{(4 b B-a C) \sin (c+d x) (a+b \cos (c+d x))^2}{12 b d}+\frac{C \sin (c+d x) (a+b \cos (c+d x))^3}{4 b d} \]

[Out]

((8*a*b*B + 4*a^2*C + 3*b^2*C)*x)/8 + ((4*a^2*b*B + 4*b^3*B - a^3*C + 8*a*b^2*C)*Sin[c + d*x])/(6*b*d) + ((8*a
*b*B - 2*a^2*C + 9*b^2*C)*Cos[c + d*x]*Sin[c + d*x])/(24*d) + ((4*b*B - a*C)*(a + b*Cos[c + d*x])^2*Sin[c + d*
x])/(12*b*d) + (C*(a + b*Cos[c + d*x])^3*Sin[c + d*x])/(4*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.193054, antiderivative size = 170, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.094, Rules used = {3023, 2753, 2734} \[ \frac{\left (4 a^2 b B+a^3 (-C)+8 a b^2 C+4 b^3 B\right ) \sin (c+d x)}{6 b d}+\frac{\left (-2 a^2 C+8 a b B+9 b^2 C\right ) \sin (c+d x) \cos (c+d x)}{24 d}+\frac{1}{8} x \left (4 a^2 C+8 a b B+3 b^2 C\right )+\frac{(4 b B-a C) \sin (c+d x) (a+b \cos (c+d x))^2}{12 b d}+\frac{C \sin (c+d x) (a+b \cos (c+d x))^3}{4 b d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^2*(B*Cos[c + d*x] + C*Cos[c + d*x]^2),x]

[Out]

((8*a*b*B + 4*a^2*C + 3*b^2*C)*x)/8 + ((4*a^2*b*B + 4*b^3*B - a^3*C + 8*a*b^2*C)*Sin[c + d*x])/(6*b*d) + ((8*a
*b*B - 2*a^2*C + 9*b^2*C)*Cos[c + d*x]*Sin[c + d*x])/(24*d) + ((4*b*B - a*C)*(a + b*Cos[c + d*x])^2*Sin[c + d*
x])/(12*b*d) + (C*(a + b*Cos[c + d*x])^3*Sin[c + d*x])/(4*b*d)

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2753

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[1/(m + 1), Int[(a + b*Sin[e + f*x])^(m - 1)*Simp[
b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]

Rule 2734

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((2*a*c
+ b*d)*x)/2, x] + (-Simp[((b*c + a*d)*Cos[e + f*x])/f, x] - Simp[(b*d*Cos[e + f*x]*Sin[e + f*x])/(2*f), x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rubi steps

\begin{align*} \int (a+b \cos (c+d x))^2 \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx &=\frac{C (a+b \cos (c+d x))^3 \sin (c+d x)}{4 b d}+\frac{\int (a+b \cos (c+d x))^2 (3 b C+(4 b B-a C) \cos (c+d x)) \, dx}{4 b}\\ &=\frac{(4 b B-a C) (a+b \cos (c+d x))^2 \sin (c+d x)}{12 b d}+\frac{C (a+b \cos (c+d x))^3 \sin (c+d x)}{4 b d}+\frac{\int (a+b \cos (c+d x)) \left (b (8 b B+7 a C)+\left (8 a b B-2 a^2 C+9 b^2 C\right ) \cos (c+d x)\right ) \, dx}{12 b}\\ &=\frac{1}{8} \left (8 a b B+4 a^2 C+3 b^2 C\right ) x+\frac{\left (4 a^2 b B+4 b^3 B-a^3 C+8 a b^2 C\right ) \sin (c+d x)}{6 b d}+\frac{\left (8 a b B-2 a^2 C+9 b^2 C\right ) \cos (c+d x) \sin (c+d x)}{24 d}+\frac{(4 b B-a C) (a+b \cos (c+d x))^2 \sin (c+d x)}{12 b d}+\frac{C (a+b \cos (c+d x))^3 \sin (c+d x)}{4 b d}\\ \end{align*}

Mathematica [A]  time = 0.433045, size = 118, normalized size = 0.69 \[ \frac{12 (c+d x) \left (4 a^2 C+8 a b B+3 b^2 C\right )+24 \left (4 a^2 B+6 a b C+3 b^2 B\right ) \sin (c+d x)+24 \left (a^2 C+2 a b B+b^2 C\right ) \sin (2 (c+d x))+8 b (2 a C+b B) \sin (3 (c+d x))+3 b^2 C \sin (4 (c+d x))}{96 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^2*(B*Cos[c + d*x] + C*Cos[c + d*x]^2),x]

[Out]

(12*(8*a*b*B + 4*a^2*C + 3*b^2*C)*(c + d*x) + 24*(4*a^2*B + 3*b^2*B + 6*a*b*C)*Sin[c + d*x] + 24*(2*a*b*B + a^
2*C + b^2*C)*Sin[2*(c + d*x)] + 8*b*(b*B + 2*a*C)*Sin[3*(c + d*x)] + 3*b^2*C*Sin[4*(c + d*x)])/(96*d)

________________________________________________________________________________________

Maple [A]  time = 0.016, size = 152, normalized size = 0.9 \begin{align*}{\frac{1}{d} \left ({b}^{2}C \left ({\frac{\sin \left ( dx+c \right ) }{4} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{3}+{\frac{3\,\cos \left ( dx+c \right ) }{2}} \right ) }+{\frac{3\,dx}{8}}+{\frac{3\,c}{8}} \right ) +{\frac{{b}^{2}B \left ( 2+ \left ( \cos \left ( dx+c \right ) \right ) ^{2} \right ) \sin \left ( dx+c \right ) }{3}}+{\frac{2\,abC \left ( 2+ \left ( \cos \left ( dx+c \right ) \right ) ^{2} \right ) \sin \left ( dx+c \right ) }{3}}+2\,abB \left ( 1/2\,\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) +1/2\,dx+c/2 \right ) +{a}^{2}C \left ({\frac{\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{2}}+{\frac{dx}{2}}+{\frac{c}{2}} \right ) +{a}^{2}B\sin \left ( dx+c \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^2*(B*cos(d*x+c)+C*cos(d*x+c)^2),x)

[Out]

1/d*(b^2*C*(1/4*(cos(d*x+c)^3+3/2*cos(d*x+c))*sin(d*x+c)+3/8*d*x+3/8*c)+1/3*b^2*B*(2+cos(d*x+c)^2)*sin(d*x+c)+
2/3*a*b*C*(2+cos(d*x+c)^2)*sin(d*x+c)+2*a*b*B*(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c)+a^2*C*(1/2*cos(d*x+c)*
sin(d*x+c)+1/2*d*x+1/2*c)+a^2*B*sin(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.03815, size = 192, normalized size = 1.13 \begin{align*} \frac{24 \,{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} C a^{2} + 48 \,{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} B a b - 64 \,{\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} C a b - 32 \,{\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} B b^{2} + 3 \,{\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} C b^{2} + 96 \, B a^{2} \sin \left (d x + c\right )}{96 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorithm="maxima")

[Out]

1/96*(24*(2*d*x + 2*c + sin(2*d*x + 2*c))*C*a^2 + 48*(2*d*x + 2*c + sin(2*d*x + 2*c))*B*a*b - 64*(sin(d*x + c)
^3 - 3*sin(d*x + c))*C*a*b - 32*(sin(d*x + c)^3 - 3*sin(d*x + c))*B*b^2 + 3*(12*d*x + 12*c + sin(4*d*x + 4*c)
+ 8*sin(2*d*x + 2*c))*C*b^2 + 96*B*a^2*sin(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.50271, size = 274, normalized size = 1.61 \begin{align*} \frac{3 \,{\left (4 \, C a^{2} + 8 \, B a b + 3 \, C b^{2}\right )} d x +{\left (6 \, C b^{2} \cos \left (d x + c\right )^{3} + 24 \, B a^{2} + 32 \, C a b + 16 \, B b^{2} + 8 \,{\left (2 \, C a b + B b^{2}\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (4 \, C a^{2} + 8 \, B a b + 3 \, C b^{2}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{24 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorithm="fricas")

[Out]

1/24*(3*(4*C*a^2 + 8*B*a*b + 3*C*b^2)*d*x + (6*C*b^2*cos(d*x + c)^3 + 24*B*a^2 + 32*C*a*b + 16*B*b^2 + 8*(2*C*
a*b + B*b^2)*cos(d*x + c)^2 + 3*(4*C*a^2 + 8*B*a*b + 3*C*b^2)*cos(d*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [A]  time = 3.94598, size = 340, normalized size = 2. \begin{align*} \begin{cases} \frac{B a^{2} \sin{\left (c + d x \right )}}{d} + B a b x \sin ^{2}{\left (c + d x \right )} + B a b x \cos ^{2}{\left (c + d x \right )} + \frac{B a b \sin{\left (c + d x \right )} \cos{\left (c + d x \right )}}{d} + \frac{2 B b^{2} \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac{B b^{2} \sin{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} + \frac{C a^{2} x \sin ^{2}{\left (c + d x \right )}}{2} + \frac{C a^{2} x \cos ^{2}{\left (c + d x \right )}}{2} + \frac{C a^{2} \sin{\left (c + d x \right )} \cos{\left (c + d x \right )}}{2 d} + \frac{4 C a b \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac{2 C a b \sin{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} + \frac{3 C b^{2} x \sin ^{4}{\left (c + d x \right )}}{8} + \frac{3 C b^{2} x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{4} + \frac{3 C b^{2} x \cos ^{4}{\left (c + d x \right )}}{8} + \frac{3 C b^{2} \sin ^{3}{\left (c + d x \right )} \cos{\left (c + d x \right )}}{8 d} + \frac{5 C b^{2} \sin{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{8 d} & \text{for}\: d \neq 0 \\x \left (a + b \cos{\left (c \right )}\right )^{2} \left (B \cos{\left (c \right )} + C \cos ^{2}{\left (c \right )}\right ) & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**2*(B*cos(d*x+c)+C*cos(d*x+c)**2),x)

[Out]

Piecewise((B*a**2*sin(c + d*x)/d + B*a*b*x*sin(c + d*x)**2 + B*a*b*x*cos(c + d*x)**2 + B*a*b*sin(c + d*x)*cos(
c + d*x)/d + 2*B*b**2*sin(c + d*x)**3/(3*d) + B*b**2*sin(c + d*x)*cos(c + d*x)**2/d + C*a**2*x*sin(c + d*x)**2
/2 + C*a**2*x*cos(c + d*x)**2/2 + C*a**2*sin(c + d*x)*cos(c + d*x)/(2*d) + 4*C*a*b*sin(c + d*x)**3/(3*d) + 2*C
*a*b*sin(c + d*x)*cos(c + d*x)**2/d + 3*C*b**2*x*sin(c + d*x)**4/8 + 3*C*b**2*x*sin(c + d*x)**2*cos(c + d*x)**
2/4 + 3*C*b**2*x*cos(c + d*x)**4/8 + 3*C*b**2*sin(c + d*x)**3*cos(c + d*x)/(8*d) + 5*C*b**2*sin(c + d*x)*cos(c
 + d*x)**3/(8*d), Ne(d, 0)), (x*(a + b*cos(c))**2*(B*cos(c) + C*cos(c)**2), True))

________________________________________________________________________________________

Giac [A]  time = 1.52493, size = 167, normalized size = 0.98 \begin{align*} \frac{C b^{2} \sin \left (4 \, d x + 4 \, c\right )}{32 \, d} + \frac{1}{8} \,{\left (4 \, C a^{2} + 8 \, B a b + 3 \, C b^{2}\right )} x + \frac{{\left (2 \, C a b + B b^{2}\right )} \sin \left (3 \, d x + 3 \, c\right )}{12 \, d} + \frac{{\left (C a^{2} + 2 \, B a b + C b^{2}\right )} \sin \left (2 \, d x + 2 \, c\right )}{4 \, d} + \frac{{\left (4 \, B a^{2} + 6 \, C a b + 3 \, B b^{2}\right )} \sin \left (d x + c\right )}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorithm="giac")

[Out]

1/32*C*b^2*sin(4*d*x + 4*c)/d + 1/8*(4*C*a^2 + 8*B*a*b + 3*C*b^2)*x + 1/12*(2*C*a*b + B*b^2)*sin(3*d*x + 3*c)/
d + 1/4*(C*a^2 + 2*B*a*b + C*b^2)*sin(2*d*x + 2*c)/d + 1/4*(4*B*a^2 + 6*C*a*b + 3*B*b^2)*sin(d*x + c)/d